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Common-Cause Failures

Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg

Source: http://www.diakont.com/solutions/nuclear-energy/
plant-systems/diesel-generator-control-systems/
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Common-Cause Failures
All 12 generators (for 6 reactors) at Fukushima Daiichi
were not available due to flooding of machine rooms
(Tsunami caused by Tōhoku earthquake)

common-cause failure
simultaneous failure of several redundant components
due to a common or shared root cause (Høyland and Rausand 1994)

Reliability of redundant systems
Usually 2 – 4 emergency diesel generators per reactor
Sufficient cooling of core if one generator works
Redundant components may not fail independently:
common-cause failure

Must include common-cause failures
in overall system reliability analysis
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common-cause failure
simultaneous failure of several redundant components
due to a common or shared root cause (Høyland and Rausand 1994)

Reliability of redundant systems
Usually 2 – 4 emergency diesel generators per reactor
Sufficient cooling of core if one generator works

Redundant components may not fail independently:
common-cause failure

Must include common-cause failures
in overall system reliability analysis

4



Common-Cause Failures
All 12 generators (for 6 reactors) at Fukushima Daiichi
were not available due to flooding of machine rooms
(Tsunami caused by Tōhoku earthquake)
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Common-Cause Failure Models

Above: CDC, http://phil.cdc.gov/phil/ ID 1194

Right: Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:Graphic_TMI-2_Core_End-State_Configuration.png
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Basic Parameter Model

Basic Parameter Model (Mosleh et al. 1988)
immediate repair
failure events follow Poisson process
system with k exchangeable components
qj : rate for failures involving exact j components (j = 1, . . . , k )
(q1, . . . ,qk ) =: q

qj , 0 for j ≥ 2: lack of independence for individual component failures

q is difficult to estimate directly:
failure data often collected per component
sparse data on joint failures

I reparametrisation: alpha-factor model
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Alpha-Factor Model
Total Failure Rate

qt =

k∑
j=1

(
k − 1
j − 1

)
qj (1)

total or marginal failure rate:
failure rate obtained by looking
just at single components

Alpha-Factors

αj =

(k
j
)
qj∑k

`=1
(k
`

)
q`

(2)

probability of j of the k components
failing due to a common cause
given that failure occurs

qj =
1(k−1

j−1
) jαj∑k

`=1 `α`
qt (3)

q ⇐⇒ (qt , α1, . . . , αk )

Data
observed per-component
failure rates to estimate qt

Data
common-cause failure counts
to estimate (α1, . . . , αk )
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Total Failure Rate: Data Model & Parameter Estimation
Poisson Process for Observed Per-Component Failures

p(M | qt ,T) =
(qtT)Me−qt T

M!
(4)

where
total failure rate qt

number of per-component (i.e. marginal)
failures M B total number of component failures occured

(two-component failure = two failures, . . . )
time under risk T B sum of time elapsed

for each of the components

Estimation of qt

usually immedially possible: use, e.g., maximum likelihood estimator

q̂t =
M
T

(5)
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Alpha-Factors: Data Model & Parameter Estimation
Multinomial Distribution for Common-Cause Failure Counts

p(n | α) =

k∏
j=1

α
nj

j (6)

where
alpha-factor αj B probability of j of the k components

failing due to a common cause
given that failure occurs

failure count nj B corresponding number of failures observed
n denotes (n1, . . . ,nk ) and α denotes (α1, . . . , αk )

Estimation of α
maximum likelihood estimator:

α̂j =
nj

n
, where

∑n
j=1 nj = n
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Alpha-Factors: Data Model & Parameter Estimation
Estimation of α
maximum likelihood estimator:

α̂j =
nj

n
, where

∑n
j=1 nj = n

The Problem
typically, for j ≥ 2, the nj are very low
with zero being quite common for larger j
zero counts = flat likelihoods I α̂j =?

I need to rely on epistemic information: Bayesian inference

Bayesian inference procedure
prior + likelihood→ posterior

using Bayes’ Rule
All inferences are based on the posterior
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Bayesian Inference: Dirichlet Prior
α considered as uncertain parameter on which we put. . .

Dirichlet Distribution (→ Dirichlet-Multinomial Model)

p(α | s, t) ∝

k∏
j=1

αst−1
j

where (s, t)
are hyperparameters

s > 0

t ∈ ∆ =
{
(t1, . . . , tk ) : t1 ≥ 0, . . . , tk ≥ 0,

k∑
j=1

tj = 1
}

Interpretation

t = prior expectation of α, i.e., a prior guess for nj
n , j = 1, . . . ,n

s = determines spread and learning speed (see next slide)
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Dirichlet Posterior

posterior density for α is again Dirichlet (→ conjugacy):

p(α | n, s, t) ∝

k∏
j=1

α
stj+nj−1
j (7)

posterior expectation of αj :

E[αj | n, s, t ] =

∫
∆

αj p(α | n, s, t)dα =
s

s + n
tj +

n
s + n

·
nj

n
(8)

we will focus on E[αj | n, s, t ]
(in a decision context, this expectation would typically end up

in expressions for expected utility)
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Example: Epistemic Information and Data

Example (from Kelly and Atwood 2011)
Consider a system with four redundant components (k = 4).
The analyst specifies the following prior expectation µspec,j for each αj :

µspec,1 = 0.950 µspec,2 = 0.030 µspec,3 = 0.015 µspec,4 = 0.005
(9)

We have 36 observations, in which 35 showed one component failing,
and 1 showed two components failing:

n1 = 35 n2 = 1 n3 = 0 n4 = 0 (10)
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Non-Informative Priors
large variation in posterior under different non-informative priors

with constrained maximum entropy prior
(Atwood 1996; Kelly and Atwood 2011):

E[α1 | n, s, t ] = 0.967 E[α2 | n, s, t ] = 0.028
E[α3 | n, s, t ] = 0.003 E[α4 | n, s, t ] = 0.001

with uniform prior tj = 0.25 and s = 4:

E[α1 | n, s, t ] = 0.9 E[α2 | n, s, t ] = 0.05
E[α3 | n, s, t ] = 0.025 E[α4 | n, s, t ] = 0.025

with Jeffreys’ prior tj = 0.25 and s = 2:

E[α1 | n, s, t ] = 0.9342 E[α2 | n, s, t ] = 0.0395
E[α3 | n, s, t ] = 0.0132 E[α4 | n, s, t ] = 0.0132
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Imprecise Dirichlet Model: Definition
Troffaes, Walter, and Kelly (2014):
model vague prior info more cautiously

Imprecise Dirichlet Model (IDM) for Common-Cause Failure
use a set of hyperparameters (Walley 1991; Walley 1996)

H =
{
(s, t) : s ∈ [s, s], t ∈ ∆, tj ∈ [t j , t j]

}

Interpretation
we are doing a sensitivity analysis (á la robust Bayes)
over (s, t) ∈ H

we take a set of priors based on H as model for prior information
(details later)

Analyst has to specify (‘elicit’)
bounds [s, s] and bounds [t j , t j] for each j ∈ {1, . . . , k }
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Imprecise Dirichlet Model: Elicitation

[t j , t j]? Cautious interpretation of prior specifications µspec,j :

[t1, t1] = [0.950,1] [t2, t2] = [0,0.030]

[t3, t3] = [0,0.015] [t4, t4] = [0,0.005]

[s, s]? Good (1965):

reason about posterior expectations for hypothetical data

s = number of one-component failures required
to reduce the upper probabilities of multi-component failure by half

s = number of multi-component failures required
to reduce the lower probability of one-component failure by half
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Imprecise Dirichlet Model: Elicitation

s = number of one-component failures required
to reduce the upper probabilities of multi-component failure by half

s = number of multi-component failures required
to reduce the lower probability of one-component failure by half

Reasonable values in example:
s = 10: after observing 10 one-component failures
I halve upper probabilities of multi-component failures

s = 1: immediate multi-component failure
I keen to reduce lower probability for one-component failure

Difference between s and s reflects a level of caution:
The rate at which we reduce upper probabilities
is less than the rate at which we reduce lower probabilities
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Imprecise Dirichlet Model: Inference

With [s, s] = [1,10], we get. . .

prior bounds + data→ posterior bounds

j t j t j nj E[αj | n,H ] E[αj | n,H ]

1 0.950 1 35 0.967 0.978
2 0 0.030 1 0.0270 0.0283
3 0 0.015 0 0 0.00326
4 0 0.005 0 0 0.00109
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Gamma Prior and Posterior
qt considered as uncertain parameter on which we put. . .

Gamma Distribution

p(qt | u, v) ∝ quv−1
t e−qt u (11)

where (u, v) are hyperparameters with u > 0 and v > 0.

Interpretation
v = prior expectation of qt

u = determines learning speed (just like s in the IDM)

posterior density for qt is again Gamma:

p(qt | M,T ,u, v) ∝ quv+M−1
t e−qt (u+T) (12)

posterior expectation of qt :

E[qt | M,T ,u, v] =
u

T + u
v +

T
T + u

·
M
T

(13)
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Imprecise Gamma Model
use a set of hyperparameters:

J =
{
(u, v) : u ∈ [u,u], v ∈ [v , v]

}
(14)

[v , v]? Bounds for prior expectation of qt should be easy to find
(choosing v = 0 is possible)
[u,u]? Similar reasoning as for the IDM leads to. . .

u = timespan for observing the process required to raise
the lower expectation of qt from 0 to half of observed failure rate M

T
(v = 0 is assumed)

u = timespan for observing the process without any failures required
to reduce the lower expectation of qt by half
(v > 0 is assumed)

u = u can be reasonable here, as zero counts are less of an issue
20



Inference on Common-Cause Failure Rates qj

combine our models for α and qt by using Eq. (3):

qj = gj(α)qt where gj(α) =
1(k−1

j−1
) jαj∑k

`=1 `α`

The Problem
no closed expression for E[gj(α) | . . . ] due to rational function of α

The Good News
naive approximation g̃j(α) of gj(α) by Taylor expansion
works surprisingly well (absolute error term available)

E[qj | n, s, t ; M,T ,u, v] ≈ E
[
g̃j(α) | n, s, t

]
E[qt | M,T ,u, v] (15)

(qt and α are assumed to be independent)
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Global Sensitivity Analysis

We can do a global sensitivity analysis for E[qj | . . . ]
I bounds for E[qj | . . . ] taking into account approximation error

and epistemic uncertainty expressed through H and J :

E[qj | n,M,T ,H ,J ] ≈ E[g̃j(α) | n,H ] E[qt | M,T ,J ] (16)

where

E[g̃j(α) | n,H ] = min
(s,t)∈H

E[g̃j(α) | n, s, t ] (by num. optimization) (17)

E[qt | M,T ,J ] = min
(u,v)∈J

E[qt | M,T ,u, v] (by closed form solution)

(18)

Do the same for E[qj | n,M,T ,H ,J ] by replacing min with max.
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Intermediate Summary

bounds, rather than precise values, are desirable
due to inferences being strongly sensitive to the prior
particularly when faced with zero counts.

simple ways to elicit the parameters of the model
by reasoning on hypothetical data
sets of hyperparameters allow a full sensitivity analysis
reflecting epistemic uncertainty on all parts of the model
use variance instead of bounds on expectations?
(operational interpretation of variance of unknown parameter
versus direct bounds on expectation of unknown parameter)
hyperparameter sets have very specific form
(chosen to allow easy elicitation),
how does shape influence posterior inferences?
is it possible to generalise this method to other problems?
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Canonical Conjugate Priors
Multinomial, Poisson are examples for a canonical exponential family:

(x1, . . . , xn) = x iid
∼ canonical exponential family

p(x | θ) ∝ exp
{
〈ψ, τ(x)〉 − nb(ψ)

} [
ψ transformation of θ

]
(19)

(includes also Binomial, Normal, Exponential, Dirichlet, Gamma, . . . )

I conjugate prior: p(ψ | n(0), y(0)) ∝ exp
{
n(0)

[
〈ψ, y(0)

〉 − b(ψ)
]}

I (conjugate) posterior: p(ψ | n(0), y(0),x) ∝ exp
{
n(n)

[
〈ψ, y(n)

〉 − b(ψ)
]}

where y(n) =
n(0)

n(0) + n
· y(0) +

n
n(0) + n

·
τ(x)

n
and n(n) = n(0) + n

Interpretation

n(0) = determines spread and learning speed
y(0) = prior expectation of τ(x)/n

24



Imprecision

Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on θ

Interpretation
smaller sets = more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]
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Bayesian Inference with Sets of Conjugate Priors

Standard Bayesian inference procedure
prior + likelihood→ posterior

using Bayes’ Rule
All inferences are based on the posterior
(e.g., point estimate E[ψ | x,n(0), y(0)] = E[ψ | n(n), y(n)])

Let hyperparameters (n(0), y(0)) vary in a set IΠ(0) I set of priors

Generalised Bayesian inference procedure
set of priors + likelihood→ set of posteriors

All inferences are based on the set of posteriors
(e.g., E[ψ | x, IΠ(0)],E[ψ | x, IΠ(0)])
Coherence (consistency of inferences) ensured by using
Generalised Bayes’ Rule (GBR, Walley 1991)
= element-wise application of Bayes’ Rule

26
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(e.g., E[ψ | x, IΠ(0)],E[ψ | x, IΠ(0)])
Coherence (consistency of inferences) ensured by using
Generalised Bayes’ Rule (GBR, Walley 1991)
= element-wise application of Bayes’ Rule
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General Model Properties

Model framework has favourable inference properties
(see Walter 2013, §3.1) and is very easy to handle:

Hyperparameter set IΠ(0) defines set of priorsM(0)

Due to conjugacy, set of posteriorsM(n) defined by
updated hyperparameter set IΠ(n)

IΠ(0)
→ IΠ(n) is easy:

n(n) = n(0) + n y(n) =
n(0)

n(0) + n
y(0) +

n
n(0) + n

·
τ(x)

n
(20)

Often, optimising over (n(n),y(n)) ∈ IΠ(n) is also easy:
closed form solution for y(n) = posterior ‘guess’ for τ(x)

n
given IΠ(0) has ‘nice’ shape (as used in the common-cause model)
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Parameter Set Shapes
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Parameter Set Shapes
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Parameter Set Shapes & Prior-Data Conflict

Prior-Data Conflict
informative prior beliefs and trusted data
(sampling model correct, no outliers, etc.) are in conflict
“[. . . ] the prior [places] its mass primarily on distributions in the
sampling model for which the observed data is surprising”
(Evans and Moshonov 2006)
there are not enough data to overrule the prior

The Problem
Many Bayesian models are insensitive to prior-data conflict!
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Scaled Normal Data x iid
∼ N(µ,1): µ ∼ N(y(0),1/n(0))
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Conclusion

Conjugate priors are a convenient tool for Bayesian inference
but there are some pitfalls

I Hyperparameters n(0), y(0) are easy to interpret and elicit
I Averaging property makes calculations simple, but leads to

inadequate model behaviour in case of prior-data conflict

Sets of conjugate priors maintain advantages & mitigate issues
I Hyperparameter set shape is important
I Reasonable choice: rectangular IΠ(0) = [n(0),n(0)

] × [y(0), y(0)
]

(Walter & Augustin 2009: generalised iLUCK-models, luck)
I Bounds for hyperparameters are easy to interpret and elicit
I Additional imprecison in case of prior-data conflict

leads to cautious inferences if, and only if, caution is needed
I Shape for more precision in case of strong prior-data agreement is

in development (joint work with Frank Coolen and Miķ Bickis)
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