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Common-Cause Failures

Source: Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Fukushima_I_by_Digital_Globe.jpg

Source: http://www.diakont.com/solutions/nuclear-energy/
plant-systems/diesel-generator-control-systems/
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Common-Cause Failures

All 12 generators (for 6 reactors) at Fukushima Daiichi
were not available due to flooding of machine rooms
(Tsunami caused by Tōhoku earthquake)

common-cause failure
simultaneous failure of several redundant components
due to a common or shared root cause [3]

Reliability of redundant systems
Usually 2 – 4 emergency diesel generators per reactor
Sufficient cooling of core if one generator works
Redundant components may not fail independently:
common-cause failure

Must include common-cause failures
in overall system reliability analysis
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Common-Cause Failure Modelling

Above: CDC, http://phil.cdc.gov/phil/ ID 1194

Right: Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:Graphic_TMI-2_Core_End-State_Configuration.png
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Basic Parameter Model: Definition

Definition (Basic Parameter Model [5])
immediate repair
failures follow Poisson process
system with k exchangeable components
qj : rate for failures involving exact j components (j = 1, . . . , k )
(q1, . . . ,qk ) =: q

qj , 0 for j ≥ 2: lack of independence for individual component failures

q is difficult to estimate directly:
failure data often collected per component
sparse data on joint failures
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Alpha-Factor Model
Definition (Total Failure Rate)

qt =

k∑
j=1

(
k − 1
j − 1

)
qj . (1)

total or marginal failure rate:
failure rate obtained by looking
just at single components

Definition (Alpha-Factors)

αj =

(k
j
)
qj∑k

`=1
(k
`

)
q`
. (2)

probability of j of the k components
failing due to a common cause
given that failure occurs

qj =
1(k−1

j−1
) jαj∑k

`=1 `α`
qt . (3)

(q)⇐⇒ (qt , α1, . . . , αk )

Data
observed per-component
failure rates to estimate qt

Data
common-cause failure counts
to estimate (α1, . . . , αk )
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Total Failure Rate: Data Model & Parameter Estimation
Poisson Process for Observed Per-Component Failures

Pr(M|qt ,T) =
(qtT)Me−qt T

M!
(4)

where
total failure rate qt

number of per-component (i.e. marginal)
failures M B total number of component failures occured

(two-component failure = two failures, . . . )
time under risk T B sum of time elapsed

for each of the components

The Good News
can estimate qt directly from data, e.g. MLE:

q̂t =
M
T

(5)
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Alpha-Factors: Data Model

Multinomial Distribution for Common-Cause Failure Counts

Pr(n|α) =

k∏
j=1

α
nj

j (6)

where
alpha-factor αj B probability of j of the k components

failing due to a common cause
given that failure occurs

failure count nj B corresponding number of failures observed
n denotes (n1, . . . ,nk ) and α denotes (α1, . . . , αk )
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Alpha-Factors: Parameter Estimation

The Good News
can estimate α directly from data, e.g. MLE:

α̂j =
nj∑n

j=1 nj
(7)

The Bad News
typically, for j ≥ 2, the nj are very low
with zero being quite common for larger j
zero counts = flat likelihoods
standard techniques such as MLE can struggle
to produce sensible inferences for α

=⇒ need to rely on epistemic information
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Dirichlet Prior
α considered as uncertain parameter on which we put. . .

Definition (Dirichlet Distribution)

f(α|s, t) ∝

k∏
j=1

α
stj−1
j (8)

where (s, t) are hyperparameters

s > 0 t ∈ ∆ =

(t1, . . . , tk ) : t1 ≥ 0, . . . , tk ≥ 0,
k∑

j=1

tj = 1

 (9)

Interpretation
t = prior expectation of α
s = determines learning speed (see next slide)
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Dirichlet Posterior
posterior density for α is again Dirichlet

f(α|n, s, t) ∝

k∏
j=1

α
stj+nj−1
j . (10)

posterior expectation of αj

E(αj |n, s, t) =

∫
∆

αj f(α|n, s, t) dα =
N

N + s
nj

N
+

s
N + s

tj (11)

where N =
∑k

j=1 nj is total number of observations

we shall focus on E(αj |n, s, t)
(in a decision context, this expectation would typically end up

in expressions for expected utility)
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Example

(taken from [4])

Example
Consider a system with four redundant components (k = 4).
The analyst specifies the following prior expectation µspec,j for each αj :

µspec,1 = 0.950 µspec,2 = 0.030 µspec,3 = 0.015 µspec,4 = 0.005
(12)

We have 36 observations, in which 35 showed one component failing,
and 1 showed two components failing:

n1 = 35 n2 = 1 n3 = 0 n4 = 0 (13)
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Non-Informative Priors
large variation in posterior under different non-informative priors

with constrained maximum entropy prior (Kelly and Atwood [1, 4]):

E(α1|n, s, t) = 0.967 E(α2|n, s, t) = 0.028
E(α3|n, s, t) = 0.003 E(α4|n, s, t) = 0.001

with uniform prior tj = 0.25 and s = 4:

E(α1|n, s, t) = 0.9 E(α2|n, s, t) = 0.05
E(α3|n, s, t) = 0.025 E(α4|n, s, t) = 0.025

with Jeffrey’s prior tj = 0.25 and s = 2:

E(α1|n, s, t) = 0.9342 E(α2|n, s, t) = 0.0395
E(α3|n, s, t) = 0.0132 E(α4|n, s, t) = 0.0132
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Imprecise Dirichlet Model: Definition

use a set of hyperparameters [7, 8]

H =
{
(s, t) : s ∈ [s, s], t ∈ ∆, tj ∈ [t j , t j]

}
(14)

over which we do a sensitivity analysis (á la robust Bayes)
analyst has to specify
bounds [t j , t j] for each j ∈ {1, . . . , k },
bounds [s, s]
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Imprecise Dirichlet Model: Elicitation

[t j , t j]? cautious interpretation of prior specifications µspec,j :

[t1, t1] = [0.950,1] [t2, t2] = [0,0.030]

[t3, t3] = [0,0.015] [t4, t4] = [0,0.005]

[s, s]? Good [2]:

reason about posterior expectations of hypothetical data

s = number of one-component failures required
to reduce the upper probabilities of multi-components failure by half

s = number of multi-component failures required
to reduce the lower probability of one-component failure by half
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Imprecise Dirichlet Model: Elicitation

reasonable values:
s = 1:
immediate multi-component failure
=⇒ keen to reduce lower probability for one-component failure
s = 10:
after observing 10 one-component failures
=⇒ halve upper probabilities of multi-component failures

there is a difference between s and s
as the rate at which we reduce upper probabilities
is less than the rate at which we reduce lower probabilities
=⇒ reflects a level of caution
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Imprecise Dirichlet Model: Inference

prior bounds + likelihood→ posterior bounds

with tj = µspec,j :

j E(αj |n,H) E(αj |n,H)

1 0.967 0.972
2 0.0278 0.0283
3 0.00041 0.00326
4 0.00014 0.00109

with bounds as earlier:
j E(αj |n,H) E(αj |n,H)

1 0.967 0.978
2 0.0270 0.0283
3 0 0.00326
4 0 0.00109
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Gamma Prior and Posterior
qt considered as uncertain parameter on which we put. . .

Definition (Gamma Distribution)

f(qt |u, v) ∝ quv−1
t e−qt u (15)

where (u, v) are hyperparameters with u > 0 and v > 0.

Interpretation
v = prior expectation of qt

u = determines learning speed (just like s in the IDM)

posterior density for qt is again Gamma

f(qt |M,T ,u, v) ∝ quv+M−1
t e−qt (u+T). (16)

posterior expectation of qt

E(qt |M,T ,u, v) =
T

T + u
M
T

+
u

T + u
v (17)
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Imprecise Gamma Model
use a set of hyperparameters:

J =
{
(u, v) : u ∈ [u,u], v ∈ [v , v]

}
(18)

[v , v]? Bounds for prior expectation of qt should be easy to find
(choosing v = 0 is possible)
[u,u]? Similar reasoning as for the IDM leads to. . .

u = timespan for observing the process required to raise
the lower expectation of qt from 0 to half of observed failure rate M

T
(v = 0 is assumed)

u = timespan for observing the process without any failures required
to reduce the lower expectation of qt by half
(v > 0 is assumed)

u = u can be reasonable here, as zero counts are less of an issue
20



Inference on Common-Cause Failure Rates qj

combine our models for α and qt by using Eq. (3):

qj = gj(α)qt where gj(α) =
1(k−1

j−1
) jαj∑k

`=1 `α`

The Bad News
no closed expression for E(gj(α)| . . . ) due to rational function of α

The Good News
naive approximation g̃j(α) of gj(α) by Taylor expansion
works surprisingly well (absolute error term available)

E(qj |n, s, t ; M,T ,u, v) ≈ E
(
g̃j(α)|n, s, t

)
E(qt |M,T ,u, v) (19)

(qt and α are assumed to be independent)
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Global Sensitivity Analysis

We can do a global sensitivity analysis for E(qj | . . . )
=⇒ bounds for E(qj | . . . ) taking into account approximation error

and epistemic uncertainty expressed through H and J :

E(qj |n,M,T ,H ,J) ≈ E(g̃j(α)|n,H)E(qt |M,T ,J) (20)

where

E(g̃j(α)|n,H) = min
(s,t)∈H

E(g̃j(α)|n, s, t) (by num. optimization) (21)

E(qt |M,T ,J) = min
(u,v)∈J

E(qt |M,T ,u, v) (by closed form solution) (22)

Do the same for E(qj |n,M,T ,H ,J) by replacing min with max
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Conclusion
main messages:

bounds, rather than precise values, are desirable
due to inferences being strongly sensitive to the prior
particularly when faced with zero counts.
simple ways to elicit the parameters of the model
by reasoning on hypothetical data
rather than by maximum entropy arguments
sets of hyperparameters allow a full sensitivity analysis
reflecting epistemic uncertainty of the analyst
on all levels of the model

stingy questions:
hyperparameter sets have very specific form,
do they fit to the epistemic information at hand?
(other set shapes are currently investigated)
can use of variance obliterate use of bounds on expectations?
(operational interpretation of variance of an unknown parameter
versus direct bounds on expectation of unknown parameter)
(credible intervals do not save the example discussed) 23
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